CENTER FOR DISEASE CONTROL

MORBIDITY AND MORTALITY WEEKLY REPORT

October 10, $1980 / \mathrm{Vol} .29 / \mathrm{No} .40$

Epidemiologic Notes and Reports 481 Follow-up on Dengue - Texas Surveillance Summary
481 Trichinosis - United States, 1979 International Notes
489 Malaria - United Kingdom, 1979 Current Trends
490 Lead Poisoning - United States ACIP Recommendation
492 Changes in Smallpox Vaccine Consultant List

Epidemiologic Notes and Reports

Follow-up on Dengue - Texas

In September, CDC reported the first instance of indigenous transmission of dengue in the United States since 1945 (1). The patient, from whom dengue 1 virus was isolated, was a resident of Brownsville, Texas; she had not traveled recently.

On September 22 and 23, local, state, and federal health officials conducted household surveys in 2 Brownsville neighborhoods to collect clinical and serologic evidence of dengue activity and to measure the prevalence of Aedes aegypti, the mosquito vector of this disease. Members of 63 households (13\% of the houses in the area) were interviewed in the neighborhood of the patient, and 128 serum specimens were collected. In the second area, members of 77 households (17% of the houses) were interviewed, and 143 sera were collected. A total of 6 persons surveyed reported a history of dengue-like illness within the previous month-5 from the neighborhood of the index patient and 1 from the second neighborhood.

The survey for A. aegypti in the neighborhood of the index patient found that 36 of 156 premises (23%) had containers with water in which mosquitoes were breeding. In the second neighborhood, 37 of 147 premises (25%) had such containers.

Serum collected from the index patient and other members of her family revealed antibodies suggestive of recent dengue infection only in the index patient and an older sister, who also had a history of a recent dengue-like illness. Results of serologic testing of specimens collected in the surveys are pending. Active surveillance for human cases continues.
Reported by D Garza, RN, Cameron County; L Fisher, RN, R Davis, RPE, J Dickens, RS, C Marshall, MD, C Sweet, DrPH, C Webb, Jr, MD, State Epidemiologist, Texas Dept of Health; San Juan Laboratories, Bur of Laboratories, Vector Biology and Control Div, Bur of Tropical Diseases, and Viral Diseases Div, Bur of Epidemiology, CDC.
Reference

1. MMWR 1980;29:451.

Surveillance Summary

Trichinosis - United States, 1073 LIGRARY

 patient, an 82 -year-old Laotian immigrant, died. This was the first reported death due to trichinosis since 1975.

Trichinosis became a reportable disease in 1947, when the mean annual incidence was well above 300 cases. The number of cases reported annually declined from 1950 until

[^0]1966, when the number of cases recorded appeared to reach a plateau (Figure 1). During the last decade an annual mean of less than 150 cases was reported. Years of high incidence such as 1969 and 1975 were associated with the occurrence of an unusually large number of common-source outbreaks. In 1979 there were 21 common-source outbreaks, which accounted for 93 (69\%) of the total cases.

FIGURE 1. Reported trichinosis cases, United States, 1950-1979

Since 1947, 7,213 cases of trichinosis have been reported in the United States. In the same period, 129 deaths were reported, for a case-fatality ratio of 17.9 per 1,000. For the 15 years 1947-1961, the case-fatality ratio was 22.7 per 1,000 , whereas in the subsequent 15 years, 1962-1976, it was 10.4 per 1,000.

This long-term decline in the incidence of trichinosis in humans in also reflected in a declining prevalence of the disease. A comparison of the results of 2 surveys, in which human diaphragm samples obtained at autopsy (1) were examined, showed that an estimated 12% of the American population was infected with trichinae in $1940(2,3)$ compared with 2.2% in $1970(4,5)$. Similarly obtained estimates of the prevalence of live Trichinella spiralis indicated that 7.3% of Americans had live organisms in their diaphragms in 1940 compared with 0.7% in 1970.

The decline in the prevalence of trichinosis in humans paralleled a similar decrease in the infection in swine. The prevalence of T. spiralis infection in farm-raised hogs, which comprise about 90% of marketed hogs, declined from 9.5 infected animals per 1,000 in the 1930s (6) to 1.3 per 1,000 in the period 1966-1970 (7). The rate for garbagefed swine similarly decreased from 110 per 1,000 in 1950 to 5.1 per 1,000 in 1966-1970.

Of the 1979 trichinosis cases, there were 73 cases in males and 62 cases in females. As in previous years the age distribution of cases was similar for both sexes. The ages of patients ranged from 1 to 82 years, with a mean of 35.3 years. The mean age of male patients was 34.0 years and that of female patients was 36.8 years.

In previous years the only consistent seasonal pattern in the occurrence of this disease in the United States has been a peak in December and January, often related to common-source outbreaks associated with homemade pork sausage prepared for the Christmas holidays. Such a pattern was not apparent in 1979. That year, the monthly incidence peaked in March, coinciding with a common-source outbreak in Louisiana involving 20 cases (8).

Trichinosis - Continued

The types of meat products incriminated as the source of trichinosis in 1979 are summarized in Table 1. In 126 cases the probable source of infection was identified; pork products from domestic swine were incriminated in 93 (73.8%). Of 88 cases where the type of domestic pork product was specified, $67(76.1 \%)$ involved sausage.

TABLE 1. Trichinosis cases by source of infection, United States, 1979

Food	Cases
Pork products from domestic swine	
Sausage	67
Pork chops	7
Other preparation	14
Unspecified	5
Subtotal	93
Nonpork products	
Walrus meat	26
Bear meat	2
Ground beef	5
Subtotal	33
Unknown Subtotal	9
Subtotal	9
Total	135

Of 112 cases for which the method of cooking of the incriminated meat was reported, $85(75.9 \%)$ indicated that the meat was not cooked. Samples of the meat items believed responsible for 39 cases were examined by investigators for the presence of T. spiralis, and larvae were identified in 13 (33.3%).
Reported by participating State Epidemiologists; Parasitic Serology Br, Parasitology Div, Bur of Laboratories, and Parasitic Diseases Div, Bur of Epidemiology, CDC.
Editorial Note: While adequate curing of sausage destroys Trichinella larvae, making further preparation of the meat unnecessary, small processors and householders who prepare their own sausage are not always aware of established standards for the proper curing and cooking of pork products. Furthermore, the stamp "U.S. Inspected and Passed" on raw pork products does not guarantee that the product is free from infective Trichinella larvae. The stamp simply signifies that the product was processed in accordance with specifications of the U.S. Department of Agriculture (USDA), but these do not require pork products to be inspected for Trichinella larvae. USDA specifications, however, do require that "ready-to-eat" pork products be heated to an internal temperature of at least $137 \mathrm{~F}(58.3 \mathrm{C}$), which is sufficient to kill Trichinella larvae. For maximum tenderness and flavor, with a minimum amount of cooking loss, the National Pork Producers Council recommends that pork roasts be cooked to an internal temperature of 170 F .

References

1. Zimmermann WJ. The current status of trichinellosis in the United States. In: Kim CW, ed. Trichinellosis. New York, Intext Educational Publishers, 1974:603-9.
2. Wright WH, Kerr DB, Jacobs L. Studies on trichinosis. XV. Summary of the findings of Trichinella spiralis in a random sampling and other sampling of the population of the United States. Public Health Rep 1943;58:1293-313.

Trichinosis - Continued

3. Wright WH, Jacobs L, Walton AC. Studies on trichinosis. XVI. Epidemiological considerations based on the examination for trichinae of 5,313 diaphragms from 189 hospitals in 37 states and District of Columbia. Public Health Rep 1944;59:669-81.
4. Zimmermann WJ, Steele JH, Kagan IG. The changing status of trichinosis in the U.S. population. Public Health Rep 1968;83:957-66.
5. Zimmermann WJ, Steele JH, Kagan IG. Trichinosis in the United States population 1966-70prevalence and epidemiologic factors. Health Services Rep 1973;88:606-23.
6. Schwartz B. Trichinosis in the United States. Presented at the First International Conference on Trichinosis, Warsaw, Poland, September 12-13, 1960.
7. Zimmermann WJ, Zinter DE. The prevalence of trichinosis in swine in the United States 1966-70. HSMA Health Rep 1971;86:937-45.
8. MMWR 1979;28:357-8.
\triangle A copy of the report from which these data were derived is available on request from CDC, Attn:
Trichinosis Surveillance, Parasitic Diseases Division, Bureau of Epidemiology, Atlanta, Georgia 30333.

TABLE I. Summary - cases of specified notifiable diseases, United States [Cumulative totals include revised and delayed reports through previous weeks.]						
DISEASE	40th WEEK ENDING		$\begin{gathered} \text { MEDIAN } \\ 1975-1979 \end{gathered}$	CUMULATIVE, FIRST 40 WEEKS		
	$\begin{gathered} \text { Octaber 4, } \\ 1980 \end{gathered}$	$\begin{gathered} \text { Dctahar } 6, \\ 1979^{*} \end{gathered}$		$\begin{gathered} \text { Oetahar } 4, \\ 1980 \end{gathered}$	$\begin{gathered} \text { Ortateré } 6 . \\ \hline 1979^{\circ} \\ \hline \end{gathered}$	$\begin{aligned} & \text { MEDIAN } \\ & 1975-1979 \\ & \hline \end{aligned}$
Aseptic maningitis	309	337	174	5.176	5.989	3.515
Brucallosis	3	2	4	143	132	177
Chickenpox	442	397	480	157,721	172,698	151,799
Diphtheria	-	1	1	157.721	172.68	15172
Encephalitis: Primary (arthropod-borne \& unspec.) Post-infectious	41 3	15 4	35 5	761	808 187	930 187
Hepatitis, Viral: Type B	402	276	281	13.588	11.133	11.531
Typ A	523	649	624	21.383	22.831	$23,695$
Malaria Type unspecified	252	222	173	8,951	1.857	6,430
Malaria Masalas (rubeola)	37	28	15	1.506	. 564	426
Measlas (rubeola)	41	83	103	12,948	12,290	$24,288$
Meningococcal infections: Total	47	35	24	2,048	2.079	1.377
Civilian Military	47	35	24	2.037	2,061	1.368 18
Mumps	69	91	188	7.310	11,440	16,576
Pertussis	39	32	33	1,290	1.079	16,576
Ruballa (Garman measles)	32	42	63	3,360	10,825	15,025
Tetanus	-	5	4	. 55	55	. 56
Tubarculasis	553	505	574	21.075	21,243	23.250
Tularamia	6	5	3	160	161	108
Typhoid fower	13	17	10	363	391	324
Typhus faver, qick-borne (Rky. Mr sported)	22	17	16	1,034	941	941
Veneral disesses: Gonormea: Civilian Milizary	$\begin{array}{r} 21,703 \\ 438 \end{array}$	21.145	21.401 575	765,522 20.833	766.183 21.403	766,183 21,403
Syphilis, primary \& sacondary: Civilien	467	564	497	20,374	18.907	18,641
Military	2	8	5	247	242	242
Rabies in animala	108	119	64	5,021	3,962	2.391

TABLE II. Notifiable diseases of low frequency, United States

	Cum. 1980		CUM. 1980
Anthrax	1	Poliomyalitis: Total	6
Botulism (Calif. 1)	49	Paralytic	4
Cholera	8	Prittacosis	85
Congenital ruballa syndrome	46	Rabias in man	-
Leprosy(III. 1, Ore. 1, Calif. 8, Hawaii 3)	165	Trichinosis (Ups. NY 1)	93
Leptospirosis (Ark.1)	57	Typhus tever, flea-borne (endemic, murine) (Md. 1, Tex. 1)	56
Phacue	15		

[^1]TABLE 1II. Cases of specified notifiable diseases, United States, weeks ending
October 4, 1980, and October 6, 1979 (40th week)

REPORTING AREA	ASEPTIC MENIN. GITIS	明UCEL. LOSIS	$\begin{gathered} \text { CHICKEN- } \\ \text { POX } \end{gathered}$	QIPHTHERIA		ENCEPHALITIS			HEPATITIS (VIRAL), BY IYPE			MALARIA		
						Primary		Postinfactions	日	A	Unspecifiad			
	1980	1980	1980	1880	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	1980	1979*	1980	1980	1990	1980	1980	$\begin{aligned} & \text { CuM. } \\ & \text { 1980 } \end{aligned}$	
UNITED STATES	309	3	442	-	3	41	35	3	402	523	252	37	1.506	
NEW ENGLAND	20	-	5914	-	-	1	1	-	22	12	10	1	90	
Maine	-			-					1	2	4			
N.H.	2	14			-	-	-	-				- 7		
Mas.	-		3	-	-	1	-	-	8	1	-	- 1		
	5	-	24	-	-		-			7	5	1	46	
	6					-		-	2	1	-	-	913	
	7	-	7	-	-		1		11	1	1	-		
MID. ATLANTIC Upstate N.Y. N.Y. City N.J. Pa .	76	-	32	-	1	3	6	-	78	69	30	9	199	
	36	_	11	-	-	2	1	-	11	14	3	3	32	
	7	-	21	-	1	-	-	-	18	8	8	455		
	21	-		-	-	1	-	-	24	17	9	-	51	
	12		-				5	-	25	30	10	261		
E.N. CENTRAL	76	-	144	-	1	12	7	1	46	67	26	3	87	
Onio	38		19				1	1		67 5	7	3$-\quad 14$		
III.		-		-	-	-	-	-	13	15	6	11		
Mich	1	-	41	-	-	-	3	-	14	12	5	$\begin{array}{ll}2 & 32 \\ 1 & 22\end{array}$		
Wis.	30		37	-	1	35	1	-	10	31	8			
	7	-	40					-	2	4	-	-	8	
W.N. CENTRAL Minn.	11	1	91	-	1	2	6	-	6	19	8	2	63	
lawa	$\bar{\square}$	1	20	-	-	2	6	-	2	11	1	2	21	
Mo.	8	1	20	-	1	2	6	-	2	3	7	-	13	
N. Dak.	2	-	1	-	1	-	-	-	2	3	-	-	13	
S. Dak,	-	-	8	_	-	-	-	-	-	-	-	-	3	
Nebr.	1	-	-	-	-	-	-	-	2	1	-	-	7	
Kans.	-	-	62	-	-	-	-	-	-	-	-	-	12	
S. ATLANTIC	42	-	56	-	-	5	6	1	97	102	30	5	158	
	-	-	-	_	-	-	-	-	1	3	2	-	-	
Md.	2	-	3	-	-	1	1	-	11	3	7	3	27	
D.C.	$\underline{-}$	-	$\underline{-}$	-	-	1	1	-	4	3	-	3	2	
Va .	3	-	-	-	-	-	-	-	6	9	4	-	56	
W. Va	4	-	10	-	-	1	2	-	2	8	-	-	4	
N.C.	10	-	NN	-	-	3	3	-	10	3	2	1	13	
Ga.	3	-	-	-	-	-	-	-	4	2	-	-	9	
FiP_{8}	1	-	1	-	-	-	-	-	35	28	-	1	16	
Fis.	19	-	42	-	-	-	-	1	24	46	15	-	31	
E.S. CENTRAL	23	-	2	-	-	1	3	-	22	39	8	-	10	
Ky.	2	-	2	-	_	-	-	-	4	13	8	-	2	
Tепп.	7	-	NN	-	-	1	2	-	11	8	-	-	-	
Ala.	13	-	2	-	-	-	1	-	3	2	-	-	6	
Miss.	1	-	-	-	-	-	-	-	4	16	-	-	2	
W.S Central	17	2	8	-	-	13	-	-	30	50	66	-	138	
Ark.	-	1	-	-	-	-	-	-	3	2	3	-	8	
4.	4	-	NN	-	-	1	-	-	1	4	-	-	42	
Okla.	2	-	-	-	-	-	-	-	9	1	4	-	12	
Tex.	11	1	8	-	-	12	-	-	17	43	59	-	76	
mountain	3	-	9	-	-	-	1	-	7	27	17	-	79	
Mont.	-	-	-	-	-	-	-	-	-	-	-	-	1	
Idaho	-	-	-	-	-	-	-	-	1	1	-	-	1	
Wyo.	-	-	-	-	-	-	1	-	-	,	-	-	2	
Colo.	3	-	8	-	-	-	-	-	1	8	4	-	32	
N. Mex.		-	-	-	-	-	-	-	-	-	-	-	4	
Ariz.	-	-	NN	-	-	-	-	-	1	10	-	-	16	
$\mathrm{U}_{\text {tah }}$	-	-	1	-	-	-	-	-	-	5	9	-	15	
Nev.	-	-	-	-	-	-	-	-	4	3	4	-	8	
PACIFIC	41	-	41	-	-	4	5	1	94	138	57	17	682	
Wash.	3	-	22	-	-	-	-	1	3	6	2	-	48	
Oreg.	1	-	2	-	-	-	3	-	3	14	3	-	36	
Calif.	36	-	-	-	-	4	2	-	88	114	49	16	576	
Alaska	1	-	5	-	-	,	2	-	-	3	2	-	6	
Hawaii	-	-	14	-	-	-	-	-	-	1	1	1	16	

Guam	NA	NA	NA	NA	-	NA	-	-	NA	NA	NA	NA	3
P.R.	2	-	9	-	-	-	-	-	1	-	-	-	3
V.I.	NA	NA	NA	NA	-	NA	-	-	NA	NA	NA	NA	-
Pac. Trust Terr.	NA	NA	NA	NA	-	NA	_	-	NA	NA	NA	NA	-

NN: Not notifiable.
*Delayed reports received for 1979 are not shown below but are used to update last year's weekly and cumulative rotals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending October 4, 1980, and October 6, 1979 (40th week)

meporting area	measles (RUBEOLA)			MENINGOCOCCAL INFECTIONS TATAL			MUMPS		PERTUSSIS	RUBELIA		TETANUS CUM. 1980
	1980	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	$\begin{gathered} \text { CUM. } \\ 19790^{\circ} \end{gathered}$	1980	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	$\begin{aligned} & \text { CUM. } \\ & \text { 1979* } \end{aligned}$	1980	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	1980	1980	$\underset{1090}{\text { cum. }}$	
UNITED STATES	41	12.948	12,290	47	2,048	2.079	69	7,310	39	32	3,360	55
NEW ENGLAND	-	670	289	1	109	115	5	560	4	2	205	2
Maine	-	33	17	-	5	7	1	288	1	-	68	1
N.H.	-	327	33	-	8	10	-	21	-	1	37	-
Vt.	-	226	119	-	13	6	-	12	-	-	3	-
Mass.	-	58	14	-	38	43	2	117	3	1	69	-
R.I.	-	2	102	1	8	7	2	26	-	-	9	1
Conn.	-	24	4	-	37	42	-	96	-	-	19	-
MID. ATLANTIC	5	3,786	1,520	5	371	315	6	815	5	1	555	7
Upatate N.Y.	1	694	645	2	115	109	2	119	4	1	211	2
N.Y. City	4	1,190	772	1	97	76	-	92	-	-	97	2
N.J.	-	827	51	1	78	75	4	106	-	-	101	-
Pa .	-	1.075	46	1	81	55	-	498	1	-	146	3
E.N. CENTRAL	4	2,422	3.196	8	237	225	23	2.749	4	3	813	3
Ohio	-	378	270	4	79	93	3	1,127	-	-	8	1
Ind.	1	92	210	-	37	42	-	125	-	-	345	-
III.	2	340	1.424	2	49	15	4	363	1	2	163	-
Mich.	1	236	827	1	58	57	11	817	1	-	126	1
Wis.	-	1.376	465	1	14	18	5	317	2	1	171	1
W.N. CENTRAL	1	1,317	1,739	3	81	66	2	281	2	-	193	3
Minn.	-	1,101	1,218	3	23	12	1	16	-	-	27	1
lowa	-	-	16	-	9	10	-	43	-	-	9	
Mo.	1	65	410	-	35	33	-	99	1	-	40	1
N. Dak.	-	1	21	-	1	1	-	4	-	-	5	-
S. Dak.	-	-	2	-	5	4	-	2	-	-	2	-
Nebr.	-	83	5	-	-	-	-	9	-	-	1	-
Kars.	-	67	67	-	8	6	1	108	1	-	109	1
S. ATLANTIC	21	1,914	1.903	8	492	508	12	1.001	8	1	336	10
Dal.	-	3	1	-	2	5	1	40	-	-	1	-
Md.	-	82	16	-	46	44	3	334	-	-	71	1
D.C.	-	-	-	-	2	-	$\underline{-}$	4	-	-	1	-
Va .	-	305	273	-	48	71	2	66	-	-	51	3
W. Va.	-	14	56	1	18	8	2	99	2	-	24	1
N.C.	1	130	113	-	92	78	-	92	2	-	46	1
S.C.	-	159	168	-	57	59	1	206	1	-	53	3
Ga .	15	826	467	4	87	73	2	5	3	-	-	-
Fla.	5	395	809	3	140	170	1	155	-	1	89	1
E.S. CENTRAL	-	332	206	2	181	152	4	863	6	-	82	4
Ky.	-	55	37	1	56	31	-	752	5	-	38	1
Tenn.	-	171	61	1	48	44	1	27	1	-	39	2
Ala	-	22	84	-	50	36	3	24	-	-	3	2
Mise.	-	84	24	-	27	41	-	60	-	-	2	$\underline{-}$
W.S. CENTRAL	4	953	911	8	214	315	3	262	3	3	123	18
Ark.	-	14	7	1	19	24	-	21	-	-	4	2
La.	1	12	250	4	79	118	-	68	3	1	11	5
Okla.	-	775	22	-	17	32	-	-	$\underline{-}$	-	5	1
Tax.	3	152	632	3	99	141	3	173	-	2	103	10
MOUNTAIN	2	486	319	1	74	83	-	195	1	2	146	-
Mont	-	2	53	-	3	9	_	55	-	-	44	-
Idaho	-	-	18	-	4	8	-	16	1	1	21	-
Wyo.	-	\checkmark	36	-	3	1	-	-	-	-	1	-
Calo.	-	24	68	-	19	5	-	53	-	-	12	-
N. Mex.		13	38	-	9	5	-	-	-	-	5	-
Ariz.	2	392	77	1	14	35	-	35	-	-	31	-
Utah	-	47	18	-	5	8	-	27	-	1	26	-
Nev.	-	8	11	-	17	12	-	9	-	-	6	-
PACIFIC	4	1.068	2. 207	11	289	300	14	584	6	20	907	8
Wash.	-	177	1,129	1	52	50	2	131	1	1	82	$-$
Orag.	-	-	61	-	47	25	2	71	-	12	62	-
Calif.	3	878	935	9	181	209	9	352	5	7	746	8
Alaska	-	6	17	,	9	6	-	12	5	1	12	-
Hawaii	1	7	65	-	-	10	1	18	-	-	5	-
Guam	NA	5	12	-	1	1	Na	10	NA	NA	2	-
P.R.	8	153	350	-	9	5	-	137	-	2	20	10
V.I.	Na	. 6	5	-	1	3	NA	2	NA	NA	-	-
Pac. Trust Tarr.	NA	6	8	-	-	1	NA	20	NA	NA	1	-

[^2]*Delayed reports received for 1979 are not shown balow but are used to update last year's weekly and cumulative totals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending October 4, 1980, and October 6, 1979 (40th week)

heporting area	TUBERCULOSIS		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { TULA } \\ \text { REMIA } \end{array} \\ \hline \begin{array}{l} \text { CUM. } \\ \text { 1980 } \end{array} \\ \hline \end{array}$	TYPHDID FEVER		TYPHUS FEVER (Tick-horne) (RMSF)		VENEREAL DISEASES (Cinilian)						RABIES (in Animals) CUM. 1980		
			gonorrhea			SYPHILIS (Pri. \& Sec.)										
	1980	CUM. 1980		1980	$\begin{gathered} \text { CUM. } \\ \text { 1980 } \end{gathered}$			1980	CUM. 1980	1980	$\begin{aligned} & \text { CUM. } \\ & 1980 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CuM. } \\ & 1979 * \\ & \hline \end{aligned}$	1980		$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	$\begin{aligned} & \text { CUM. } \\ & 1979^{2} \end{aligned}$
UNITED STATES 553 21,075				160	13	363	22	1,034	21,703	765.522	766.183	467	20,374	18,907	5.021	
NEW ENGLAND	14	592	6	2	10	1	13	594	19.416	18,899	15	404	363	51		
Maine	-	42	-	-	1	-	-	27	1,105	1,297	-	5	10	22		
N.H.	-	14	-	-	-	-	-	19	701	704	-	1	16	7		
Vt	-	19	-	-	-	-	-	12	453	457	-	5	1	-		
Mass.	7	323	4	2	7	1	6	243	8,102	7,507	8	238	203	13		
R.I.	1	57	1	2	1	-	2	38	1.252	1,540	-	26	12	1		
Conn.	6	137	1	-	1	-	5	255	7.803	7,394	7	129	121	8		
MID. ATLANTIC Upstata N.Y. N.Y. City N.J. Pa.	125	3,436	3	2	73	-	46	3,297	84,112	83,675	67	2,865	2,828	63		
	27	682	1	2	14	-	14	744	15,679	14.275	7	256	210	33		
	22	1,219	1	-	31	-	3	1,050	32,467	32,952	41	1,851	1,906	-		
	47	733	1	-	15	-	17	676	15,183	14,817	7	342	370	12		
	29	802	-	-	13	-	12	827	20,783	21.631	12	416	342	18		
EN. CENTRAL Ohio Ind. III. Mich. Wis.	95	3,045	1	5	36	-	26	3,645	118.788	118.697	64	1,938	2,418	762		
	16	544	-	-	7	-	13	807	31,492	32,553	16	293	472	49		
	15	+ 323	-	$\overline{-}$	-	-	2	359	11,915	10,219	3	149	174	65		
	23	1.070	$\overline{-}$	4	17	-	6	1.482	37,375	37,178	17	1,103	1,342	411		
	32	922	1	1	8	-	3	764	26,966	28.023	27	321	362	15		
	9	186	-	-	4	-	2	233	11.040	10,724	1	72	68	222		
W.N. CENTRAL Minn. lowa Mo. N. Dak. S. Dak. Nebr . Kans.	14	760	27	1	26	-	52	1.081	36,770	37,891	15	269	249	1,607		
	-	140	1	-	3	-	-	170	5.967	6,330	10	96	68	177		
	2	71	1	-	2	-	3	112	3.942	4.562	-	14	28	353		
	9	352	22	1	18	-	33	413	16,409	16.253	4	130	114	320		
	-	40	-	-	-	-	-	9	521	637	-	3	2	189		
	-	38	-	-	1	-	2	21	1,092	1,276	-	4	2	353		
	1	30	1	-	1	-	4	81	2,834	2,662	-	7	4	86		
	2	89	2	-	1	-	10	275	6,005	6,171	1	15	31	129		
S. ATLA Del. Md. D.C. V_{a} W. Va. N.C. sc. Ga. Fla	81	4, 817	9	-	38	15	660	4.794	191.471	185,371	113	4.906	4.472	392		
	-	64	-	-	1	-	2	111	2,755	3,072	4	14	23	1		
	11	566	2	-	2	2	72	189	20,101	22,898	NA	343	290	29		
	5	271	-	-	4	-	-	277	13,411	12,181	8	367	352	-		
	11	508	-	-	7	2	91	557	17,512	17,794	10	435	371	14		
	3	162	-	-	3	1	5	94	2,571	2,495	-	15	44	22		
	17	830	3	-	3	8	293	988	27.929	26,627	17	344	358	20		
	4	415	-	-	3	2	138	485	18,029	17.488	5	282	231	54		
	0	606	4	-	$\overline{5}$	-	54	977	37.509	35,144	37	1.412	1,250	190		
	30	1.195	-	-	15	-	5	1.116	51.654	47,672	32	1.694	1,553	62		
E.S. CENTRAL Ky . Tann. Ala Miss.	46	1,911	10	1	11	6	105	1,845	62,592	64,975	34	1,679	1,236	273		
	10	426	-	-	3	2	18	273	9,263	8, 694	-	108	133	120		
	13	626	7	-	1	2	56	729	22,571	23,424	13	703	534	109		
	11	504		1	3	1	17	499	18,458	19,234	21	375	226	44		
	12	355	2	-	4	1	14	344	12,300	13,623	-	493	343	-		
W.S. CENTRAL Alk. La Okla Tax.	77	2,401	65	-	55	-	112	2,440	96,973	98,606	89	4,082	3,476	1,183		
	12	266	41	-	5	-	25	336	7.690	7,634	14	152	114	155		
	27	457	-	-	1	-	2	544	17.750	17.569	11	994	882	13		
	1	251	18	-	4	-	58	160	9.715	9,680	1	80	70	202		
	37	1,427	6	-	45	-	27	1.400	61,818	63,723	64	2,856	2,410	813		
MOUNTA Mont. Idaho Wyo. Colo. N. Mex. Ariz. Utah Nov.	21	577	29	-	21	-	16	759	29,467	30,911	31	502	385	214		
	3	27	9	-	1	-	3	NA	1.020	1.515	NA	2	8	48		
	-	23	1	-	1	-	1	17	1,291	1.384	1	25	24	2		
	1	17	4	-	-	-	2	37	875	896	-	10	8	15		
	10	92	6	-	7	-	5	187	7.956	8, 142	5	126	75	52		
	6	111	1	-	2	-	4	58	3,583	3,784	3	86	68	42		
	1	243	1	-	7	-	-	269	7,951	8,719	22	176	114	51		
	-	38	5	-	3	-	1	47	1.495	1,569	-	13	3	3		
	-	26	2	-	$-$	-	-	144	5,296	4,902	-	64	85	1		
Pacific Wash. Üreg Calif. Alestice Hawail	80	3,736	10	2	93	-	4	3,248	125,933	127,158	39	3,729	3.480	476		
	7	323	-	-	3	-	-	NA	10,203	11,003	NA	171	170	-		
	${ }^{3}$	+139	3	-	9	-	1	233	8,664	8,024	1	85	140	4		
	68	3,149	6	2	81	-	3	2.848	101,465	101,808	34	3,337	3,075	428		
	-	49	1	-	-	-	-	107	3.099	3,947	1	8	21	44		
	2	76	-	-	-	-	-	60	2,502	2,376	3	128	74	-		
Guam P. \boldsymbol{A}. U.I. $P_{\text {pe }}$ Trust Terr.	NA	36	-	Na	1	NA	-	NA	83	90	NA	4	-	-		
	Na	127	-	-	8	Na	-	70	2,102	1,695	22	480	429	42		
	NA	-	-	NA	-	-	-	NA	108	130	NA	10	7	-		
	NA	33	-	NA	-	-	-	NA	334	360	NA	-	1	-		

TABLE IV. Deaths in 121 U.S. cities,* week ending
October 4, 1980 (40th week)

REPORTING AREA	ALL CAUSES, by age (years)					P\& I"TOTAL	REPORTING AREA	ALL CAUSES, 㫙 Age (YEARS)					$\left\lvert\, \begin{aligned} & \text { P\& } 1 * * \\ & \text { TOTAL } \end{aligned}\right.$
	ALL AGES	>65	45-64	25-44	<1			ALL AGES	>65	45-64	25-44	<1	
NEW ENGLAND	665	453	153	29	14	44	S. ATLANTIC	1, 203	667	318	114	41	50
Boston, Mass.	183	115	48	1	5	20	Atlanta, Ga.	91	55	18	10	1	1
Bridgaport, Conn.	46	28	12	4	1	2	Baltimora, Md.	173	97	41	23	6	4
Cambridpa, Mass.	29	21	6	-	-	2	Charlotte, N.C.	70	32	23	7	6	2
Fall River, Mass.	34	27	6	1	-	-	Jacksonville, Fla.	81	45	29	5	-	4
Hartford, Conn.	50	30	14	3	1	1	Miami, Fla.	119	56	35	16	5	4
Lowell, Mass.	32	21	10	1	-	3	Norfolk, Va.	59	33	19	3	4	2
Lymn, Mass.	22	18	2	2	-	-	Richmond, Va.	83	45	21	6	2	4
Naw Bedford, Mass.	16	10	5	1	-	1	Savannah, Ga.	48	28	15	1	-	3
New Haven, Conn.	48	30	11	6	1	4	St. Petersburg، Fla.	100	81	11	3	3	13
Providence, R.I.	64	43	14	2	4	7	Tampa, Fla.	81	55	17	5	2	5
Somerville, Mass.	8	7	1	-	-	-	Washington, D.C.	238	116	71	30	9	6
Springtield, Mass.	44	26	15	1	1	1	Wilmingtan, Del.	54	24	12	5	3	2
Watar bury, Cann.	29	25	2	-	1	1							
Worcester, Mass.	60	52	7	1	-	2							
							E.S. CENTRAL	614	352	172	36	30	24
							Birmingham, Ala.	88	56	24	5	1	1
MID. ATLANTIC	2,392	1,512	556	164	80	73	Chattanooga, Tenn.	48	30	11	4	2	3
Albany, N.Y.	45	29	14	1	1	1	Knoxville, Tenn.	44	28	11	2	1	1
Allentown, Pa	22	16	6	-	-	-	Louiswille, Ky.	66	34	18	9	1	6
Buffalo, N.Y.	94	65	22	2	3	6	Memphis, Tenn.	115	65	34	6	7	4
Camden, N.J.	36	24	9	2	1	-	Mobile, Ala	81	52	12	4	5	1
Elizabath, N.J.	17	8	6	1	2	-	Montgomery, Ala.	47	30	14	1	2	4
Erie, Pa . \dagger t $^{\text {d }}$	39	29	8	1	1	1	Nashville, Tenn.	125	57	48	5	11	4
Jarsey City, N.J.	46	26	14	4	2	2							
Nawark, N.J.	62	32	13	6	9	4							
N.Y. City, N.Y.	1.282	798	291	108	33	31	W.S. CENTRAL	1,285	683	335	129	79	45
Patarson, N.J.	28	15	6	-	7	-	Austin, Tex.	42	30	8	3	1	3
Philadelphia, Pa. ${ }^{\text {d }}$	306	176	80	23	16	14	Baton Rouga, La.	43	27	9	6	-	1
Pittsburgh, Pa. \dagger	61	40	16	3	2	2	Corpus Christi, Tex.	37	16	14	4	1	1
Reading, Pa.	39	30	6	5	1	2	Dallas, Tex.	183	107	38	20	14	7
Rochester, N. Y.	122	83	24	5	1	7	El Paso, Tex.	65	39	16	4	4	6
Schenectady, N.Y.	23	20	3		$\underline{-}$	$\underline{-}$	Fort Worth, Tex.	77	45	14	5	10	3
Scranton, Pa. \dagger	21	14	5	-	-	1	Houston, Tex.	365	166	105	48	14	4
Syracuse, N.Y.	68	50	15	2	-	1	Little Rock, Ark.	66	35	17	3	7	8
Tranton, N.J.	41	29	9	2	1	1	New Orleans, La	151	78	33	21	18	1
Utica, N.Y.	18	13	5	-	$\underline{-}$	-	San Antonio, Tex.	140	81	42	5	5	4
Yonkers, N.Y.	22	15	4	3	-	-	Shreveport, La. Tulsa, Okla	$\begin{aligned} & 40 \\ & 76 \end{aligned}$	23	13	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	2	2
E.N. CENTRAL	2. 160	1. 305	556	146	80	66							
Akron, Ohio	45	28	13	2	1	-	MOUNTAIN	565	321	135	44	23	28
Canton, Ohio	35	18	9	4	1	-	Albuquarque, N. Max.	77	44	15	11	4	6
Chicago, III.	517	298	144	39	24	10	Colo. Springs, Colo.	28	19	3	3	1	6
Cincinnati, Ohio	147	100	34	6	4	11	Denver, Colo.	100	67	28	1	-	3
Cleveland, Ohio	168	91	43	14	10	3	Las Vegas, Nev.	65	21	21	7	1	2
Columbus, Ohio	133	69	45	9	4	3	Ogden, Utah	19	15	4	-	-	2
Dayton, Ohio	102	66	27	7	-	2	Phoanix, Ariz.	127	69	29	11	7	2
Detroit, Mich.	264	160	62	25	9	7	Pueblo, Colo.	12	9	3	-	-	1
Evansville, Ind.	44	28	10	3	1	2	Salt Lake City, Utah	42	15	12	3	8	-
Fort Wayne, Ind.	46	28	11	2	-	-	Tucson, Ariz.	95	55	20	8	2	6
Gary, Ind.	20	9	3	6	,	-							
Grand Rapids, Mich.	50	36	8	3	3	4							
Indianspolis, Ind.	143	74	49	11	5	2	PACIFIC	1,642	1. 054	388	91	44	57
Madison, Wis.	34	17	8	5	-	2	Berkeley, Calif.		6	2	1	-	3
Milwaukee, Wis.	144	110	25	3	4	5	Fresno, Calif.	57	31	13	-	4	2
Pearia, III.	40	24	9	2	3	3	Glendale, Calif.	25	19	3	2	1	2
Rackiord, III.	34	22	7	3	1	2	Honalulu, Hawaii tt	54	31	15	3	2	2
South Bend, Ind.	36	24	11	1	-	4	Long Beach, Calif.	78	55	19	2	1	1
Toledo, Ohio	94	60	21	1	6	6	Los Angalas, Calif.	382	263	81	14	8	12
Youngstown, Ohio	64	43	17	-	3	-	Oakland, Calif.	91	51	24	6	5	1
							Pasadena, Calif.	32	21	7	2	1	5
							Portland, Oreg.	117	74	25	8	5	-
W.N. CENTRAL	721	434	170	43	35	21	Sacramento, Calif.	82	49	22	6	2	4
Des Moines, Iowa	55	37	15	-	2	3	San Diego, Calif. $\dagger \dagger$	124	77	31	7	4	1
Duluth, Minn.	36	25	7	1	1	3	San Francisco, Calif.	174	105	50	12	2	5
Kansas City, Kans.	35	19	10	3	2	1	San Jose, Calit.	185	115	38	14	7	12
Kansas City, Mo.	120	75	28	6	3	3	Seattle, Wash.	138	89	33	11	-	2
Lincoln, Nebr.	18	9	6	1	2	-	Spokant, Wash.	45	30	12	2	1	-
Minneapolis, Minn.	84	54	18	5	2	-	Tacoma, Wash.	49	32	13	1	1	5
Omaha, Nebr.	86	47	20	9	5	1							
St. Louis, Ma.	131	83	25	10	9	5							
St. Paul, Minn.	48	33	9	2	2	-	TOTAL	11.247	5.781	2,783	796	426	408
Wichita, Kans.	108	52	32	6	7	5							
"Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the weak that the death certificate was filed. Fetal deaths are not included. **Preumania and influenza													
†Because of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current waek. Complete counts will be available in 4 to 6 weeks.													
$\dagger \dagger$ Data not available this week. Figures are estimates based on average percent of regional totals													

International Notes

Malaria - United Kingdom, 1979

In 1979, 2,053 cases of malaria were imported into the United Kingdom, according to the Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine. The upward trend of recent years continues (Figure 2). The country of infection was stated for 1,570 cases: 500 (32%) patients were infected in Africa, 1,001 (64\%) in the Indian subcontinent, and $69(4 \%)$ in other parts of the world.
FIGURE 2. Malaria cases reported to Malaria Reference Laboratory, London, England, 1973-1979

Plasmodium vivax was the most frequently identified species; of the 1,469 infections caused by this species, the Indian subcontinent contributed 978. This figure represents 89% of the P. vivax cases in which the country of infection was known. The next most frequent cause of infection was P. falciparum, which accounted for 435 cases; 367 of these were contracted in Africa, 98% of the P. falciparum cases for which the country of infection was identified. Other species were far less common: P. ovale accounted for 33 cases, P. malariae for 20 . There were 8 mixed infections, and in 88 cases the species was not stated.

Five deaths were reported, all in Britons who had been visiting countries in Africa with endemic malaria. All of these fatal infections were due to P. falciparum.

Information on recent travel was obtained for 1,315 patients. Of these, 385 were immigrants who had not recently revisited their country of origin, 434 were immigrants who had done so, and 92 were British-born children of immigrants who had visited their parents' country of origin. An additional 146 were foreigners found to have malaria while visiting Britain; 47 resided abroad but were visiting the United Kingdom; and 22 were

Malaria - Continued

members of sea or air crews or travelers in transit. Other types of travelers in whom malaria was diagnosed on return to England were tourists (70), persons making business trips (78), school children or students visiting parents abroad (31), and military personnel (10). Reported by the Communicable Disease Surveillance Centre, Public Health Laboratory Service, Colindale, England.

Current Trends

Surveillance of Childhood Lead Poisoning - United States

During the second quarter of fiscal year 1980, 62 childhood lead poisoning prevention programs reported the screening of 125,469 children; of those 5,077 were identified as having lead toxicity (Table 2). In addition, programs provided medical care, surveillance, and environmental services to decrease lead hazards to the 24,193 children reported to be under pediatric management for this condition.

CDC recommends that erythrocyte protoporphyrin (EP) analysis be used as the primary screening test for lead toxicity, and that child health providers incorporate EP screening as a routine service for all children ages 1-5. An important feature of the EP test is that it detects iron deficiency as well as lead toxicity, which has enabled programs to identify 4,000-6,000 children with possible iron deficiency each quarter. So far this fiscal year, programs have screened 242,137 children; 13,027 required follow-up for lead toxicity, and 11,357 were referred for care of iron deficiency.

Reported by the Environmental Health Services Div, Bur of State Services, CDC.
TABLE 2. Results of screening in childhood lead poisoning control projects, United States, second quarter fiscal year 1980 (January 1-March 31, 1980)

Programs	Scraened	Numbar of children					Number of dwellings ralated to children with land roxicity		
		With lead toxicity*				Identified with iron deficiancy			
		Requiring pediatric managament			Recoiving pediatrie management \dagger		Inspected	Found with lead	Reducad
		Tatal	Clase II	$\begin{gathered} \text { Claness } \\ \text { III \& IV } \end{gathered}$					
Bridgaport, Conn.	1,287	27	18	9	119	13	29	25	3
Waterbury, Conn.	749	15	11	4	141	69	26	26	29
Boston, Mass.	4,670	174	111	63	1.189	171	35	32	27
Lewrence, Mass.	1,974	94	72	22	257	60	77	60	46
Worcester, Mass.	1,608	67	55	12	273	46	21	21	26
Rhode Isiand State	1,757	82	48	34	638	18	74	69	47
REGION I TOTAL	12,045	459	315	144	2,617	377	262	233	178
Cumulative FY 80	22,579	1,190	772	418		646	609	553	394
Atlantic City, N.J.	298	10	5	5	45	5	10	10	10
Camden. N.J.	628	18	13	5	513	16	48	31	29
East Orange, N.J.	550	29	23	6	137	99	23	12	13
Jartay City, N.J.	750	68	61	7	480	41	38	31	23
Long Branch, N.J.	240	11	8	3	30	12	15	14	10
Newark, N.J.	1.517	241	214	27	633	52	38	26	73
Patersan, N.J.	1,205	85	69	16	662	115	102	85	76

Childhood Lead Poisoning - Continued
TABLE 2. Results of screening in childhood lead poisoning control projects, United States, second quarter fiscal year 1980 (January 1 March 31, 1980) - Continued

Programs	Scraened	Numbar of children					Number of dwellinga related to children with lead toxicity		
		With lad toxicity*				Identified with iron daficiancy			
		Requiring pediatric managemant			Recaiving pediatric mangement			Found	
		Total	Class II	Clastes III g IV			Inspected	with lend	Reduced
Plainfield, N.d.	581	38	33	5	143	36	41	23	15
N.J. (other local programs) \ddagger	527	95	53	42	NA	58	NA	NA	NA
Erie Co., N.Y.	1,719	80	66	14	204	15	103	57	64
Monrae Co., N. Y.	1.344	91	75	16	264	99	58	53	37
New York City	26,377	943	648	295	2,038	1,748	222	121	121
Onondaga Co., N.Y.	1,838	46	38	8	425	89	49	19	40
Westchester Co., N.Y.	1.077	23	19	4	403	85	20	16	13
REGION II TOTAL	38,651	1,778	1,325	453	5,977	2,470	767	498	524
Cumulative FY 80	76,361	4,518	3,226	1,292		5,730	1.789	1,188	1,139
Delaware State	1,083	25	15	10	305	87	11	7	15
Weshington, D.C.	3.839	51	40	11	584	384	103	39	20
Baltimore, Md.	6,592	74	52	22	373	80	172	109	74
Allentown-Bethlehem, Pa .	422	5	4	1	20	28	11	11	0
Chester, Pa.	642	15	11	4	261	15	35	35	18
Philadelphia, Pa.	5,261	904	627	277	1,906	53	166	158	84
Wilkes-Barre, Pa.	613	16	11	5	155	26	56	38	24
York, Pa.	310	5	4	1	70	38	10	10	2
Lenchburg, Va.	363	10	9	1	109	19	41	36	12
Norfolk, Va.	921	16	12	4	214	17	25	18	10
Portsmouth, Va.	664	20	16	4	167	42	15	7	5
Richmond, Va.	1.623	24	18	6	215	52	87	60	18
REGION III TOTAL	22,333	1.165	819	346	4,379	841	732	528	282
Cumulative FY 80	43,805	2.870	1.948	922		2,153	1,611	1.130	576
Augusta, Ga.	825	10	7	3	115	37	30	30	22
Louisville, Ky.	2,604	27	21	6	373	102	64	61	74
South Cerolina State	2.516	58	40	18	267	76	83	60	50
Memphis, Tenn.	1,074	14	11	3	162	9	13	12	28
AEGION IV TOTAL	7,019	109	79	30	917	224	190	163	174
Cumulative fY 80	12,682	258	182	76		401	416	345	369
Chicago, III.	11,179	682	462	220	2,313	29	403	175	140
Mi. (lother local programs) \ddagger	882	38	25	13	28	3	16	10	3
Kankakee, III.	587	8	8	0	34	27	16	10	7
Madison Co., III.	626	1	1	0	8	51	4	4	2
Wockford, III.	529	6	5	1	205	22	23	19	12
Waukegan-Lake Co., III.	15	1	1	0	10	2	5	4	0
Port Wayne, Ind.	433	5	4	1	48	1	16	11	0
Getroit, Mich.	4,699	95	64	31	655	43	105	73	184
Wrand Rapids, Mich.	1,801	8	5	3	42	32	6	2	2
Wayne Co., Mich.	435	22	11	11	77	14	12	12	15
Akron, Ohio	1.209	38	36	2	185	163	37	23	14
Cincinnati, Ohio	2,129	27	11	16	416	129	102	21	13
Ceveland, Ohio	3,287	98	68	30	824	160	96	18	53
Milwaut, Wis.	278	3	3	0	11	2	5	4	0
Milwaukee, Wis.	941	56	36	20	345	25	121	88	34
HEGIONV TOTAL	29.010	1,088	740	348	5,201	703	967	474	479
Cumulative FY 80	56.289	2,885	1.916	969		1.139	2,201	1,148	1,142
Arkansas Stata	2.060	49	37	12	479	49	89	54	21
Nowisiana State	464	3	3	0	7	0	0	0	0
Hew Orleans, La.	2.906	78	54	24	773	129	47	39	33
Reuston, Tix.	2,010	26	18	8	299	100	30	21	13
REGION VI TOTAL	7.440	156	112	44	1,558	278	166	114	67
Cumulative.FY80	13.851	384	256	128		508	387	263	154
Cedar Rapids-Linn Co.. lowa	1.045	17	11	6	52	36	14	19	8
St. Lenport-Scott Co., Iowa	957	7	5	2	105	27	16	13	13
Sprinatis, Mo.	3.022	250	159	91	3,074	53	595	531	264
Orinahatiald, Mo.F	338	16	14	2	20	92	6	5	2
REGIOM Douglas Co., Neb.	657	13	12	1	115	15	21	19	15
REGION VII TOTAL	6,019	303	201	102	3,366	223	652	587	302
Cumulative FY 80	11.868	881	507	374		476	1,473	1.226	803
Alameda Co., Calif.	953	12	6	6	30	36	8	8	4
REs Angeles, Calif.	1.999	7	0	7	148	156	36	29	11
REGION IX TOTAL	2,952	19	6	13	178	192	44	37	15
Cumulative FY 80	4.702	41	19	22		304	157	61	36
US. TOTALS	125.469	5,077	3.597	1,480	24,193	5,308	3,780	2,634	2,021
Cumulative FY 80	242,137	13,027	8.826	4,201		11,357	8,643	5,914	4,613

[^3]Recommendation of the Immunization
Practices Advisory Committee (ACIP)

Changes in ACIP Smallpox Vaccine Consultant List

Two changes have been made in the recently published list of volunteer consultants on smallpox vaccination complications (1). Volunteer \#18, located in Norfolk, Virginia, has been replaced. That entry should read as follows:

Andrew Heaton, MD
Director, Tidewater Regional American Red Cross, Blood Services
Assistant Professor of Pathology
Eastern Virginia Medical School
611 West Brambleton Ave.
Norfolk, Va. 23510
Office: 804-446-7701
Home: 804-440-0759
Also, the office phone number for volunteer \#11, Neal Halsey, MD, is: 504-588-5199.

Reference

1. MMWR 1980;29:417-20.

The Morbidity and Mortality Weekly Report, circulation 91,840, is published by the Center for Disease Control, Atlanta, Georgia. The data in this report are provisional, based on weekly telegraphs to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Send reports to: Center for Disease Control, Attn: Editor, Morbidity and Mortality Weekly Report, Atlanta, Georgia 30333.

Send mailing list additions, deletions, and address changes to: Center for Disease Control, Attn: Distribution Services, GSO 1-SB-419, Atlanta, Georgia 30333. Or call 404-329-3219. When requesting changes be sure to give your former address, including zip code and mailing list code number, or send an old address label.
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

PUBLIC HEALTH SERVICE / CENTER FOR DISEASE CONTROL ATLANTA, GEORGIA 30333 OFFICIAL BUSINESS

Postage and Fees Pald
U.S. Department of HHS

Director, Center for Disease Control William H. Foege, M.D.
Director, Bureau of Epldemlology Phillp S. Brachman, M.D.

Editor

Michael B. Gregg HCA5
ManagIng Editor Anne D. Mather,
Mathematical Statis Keewhan Chol, E .

$$
\begin{aligned}
& \text { HCA5 } \\
& \text { MRS MARY } \\
& \text { MILLSMAOOO7517921SXXX } \\
& \text { DIRECARY ALICE MILLS } \\
& \text { DIRECTOR; LI BRARY }
\end{aligned}
$$

HHS 396

[^0]: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES / PUBLIC HEALTH SERVICE

[^1]: -Delayed reports received for calendar year 1979 are used to update last year's weekly and cumulative totals.

[^2]: NA: Not available.

[^3]: Screening Class II and Classes III \& IV defined in CDC Stetement, "Preventing Lead Poisoning in Young Children," April 1978
 $\ddagger \mathrm{Not}_{\mathrm{ot}}$ cumulative.
 \# Aeporting program not receiving Lead Poisoning Prevention grant support
 $A=$ Not available.

